In any artificial and natural growth at some rate, the quantity will double at regular intervals of time- doubling time . In any decline or decay process at a fixed rate, in the quantity will halve itself at constant intervals of time- half life . For example: at a particular rate of interest, the amount of money will double in constant period of time.There is a very simple formula to calculate doubling time or half life. Doubling time or half life = natural log [2] / rate of decay or growth. simply t = 0.6931/r Note: Rate should be expressed in decimal numbers. example: 5% = 5/100 = 0.05 the answer will be in the same unit as r considering real life problems: 1. If the inflation rate is 6% per annum, when the prices will double? t = 0.6931/0.06 = 11.5 years Every 11.5 years, the prices will be double. 2. If a financi...
Tons of knowledge as digestible nuggets