Skip to main content

A PROBLEM THAT BAFFLES MATHEMATICIANS

   

    We will produce a sequence of numbers following some rules.
     1. Take any positive natural integer.
     2. If it is even, next term will be half of it.
     3. If it is odd, multiply it by three and add one to get next term.
     4. Apply the rule no.2 or 3 to the next term and go on produce the sequence.

     Let us take an example; consider the number 12.  It is even; hence next term is 6, again even; next term is 3.  Now it is odd; next term is 3+3+1 = 10.  Just proceed like this, we get,
12, 6,3,10,5,16,8,4,2,1

     Now let us take 19;
19,58,29,88,44,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1

     It seems, we always end up with 8,4,2,1.  In fact, all the numbers tested so far (even using the computer) always end up with 8,4,2,1...   In other words, this sequence ultimately reaches one.
     We know, it is impossible to test the infinite numbers.  Is there any mathematical proof that the sequence will always reach one?  No, not so far.  This problem is called "Collatz conjecture" (assumption).  This problem can be easily understood by a 10-year-old.  But the mathematics world has not solved the problem even today.
     One great mathematician once said, "mathematics is not ready for such problems."
     One can easily a write small computer program to produce this sequence.  This problem has not practically served any purpose so far.  But it can attract youngsters towards mathematics and number theory.  Some people say, the solution to the problem carries some prize money.  But, remember there is no easy solution to this problem.  Anyway, attempt it.
     Philosophically, we may arrive at one conclusion.  That is, " Even if you multiply something three times, and spend half of it, you will end up with one unit".  Is the nature trying to tell us something through Colletz conjecture?

Note;     
The stopping time or number of steps to arrive at one does not follow any pattern.  It baffles us more.  A small computer program to produce the sequence is given here.






---------------------------------------------------------------------------------

Comments

Popular posts from this blog

Your heart -you do not know

  Size and Location: The human heart is roughly the size of a clenched fist and is located slightly to the left of the center of the chest. Despite its relatively small size, the heart plays a crucial role in pumping blood throughout the entire body. Heartbeat Variability: The heart does not beat at a constant rate. The interval between heartbeats can vary, and this variability is considered a sign of a healthy heart. Factors such as breathing, emotions, and physical activity influence the heartbeat. Electrical Conduction: The heart's contractions are controlled by electrical impulses. The sinoatrial (SA) node, often called the "natural pacemaker," generates electrical signals that regulate the heartbeat and coordinate the pumping of blood. Blood Pumping Capacity: On average, the human heart pumps about 2,000 gallons (or 7,570 liters) of blood each day. Over a lifetime, this amounts to pumping enough blood to fill several Olympic-sized swimming pools. Heart Chambers and V...

THE WORK HORSE "="

    One cannot think of  a mathematical step without 'is equal to ' .  It balances right hand side and left hand side.  It aids simplification and manipulation of a mathematical expression. example: 2(A+B)  = C 2A+2B  = C         2A = C-2B           A = C-2B/ 2   In an electronic calculator,  the pressing of ' = " sign executes an asthmatic expression  or simply calculates.       In computer languages, it plays very important role.                                                                 A = B   When a computer looks at this expression, the value stored in the location named B is just transferred to the storage named A .  After execution both A and B will have the same value an...

How does your smart phone detect motion, steps, rotation, and location?

 How it works-1  An accelerometer in a smartphone is a microelectromechanical system (MEMS) device that measures acceleration and tilt. It works by detecting changes in motion by measuring the vibration or acceleration of the device. The accelerometer consists of a small mass suspended on a spring inside a sealed chamber. When the device is subjected to acceleration, the mass moves relative to the device, causing a change in capacitance that can be measured and processed by the smartphone's hardware. The accelerometer measures acceleration in three dimensions (x, y, and z) and provides data that the smartphone's software can use to determine the device's orientation, detect motion, and track changes in velocity and acceleration. The accelerometer is used for a variety of purposes in a smartphone, including screen rotation, motion tracking for games and fitness apps, and detecting the position of the device for navigation and location services. Additionally, it can be used t...